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Label-free nanosensors can detect disease markers to provide
point-of-care diagnosis that is low-cost, rapid, specific and sen-
sitive1–13. However, detecting these biomarkers in physiological
fluid samples is difficult because of problems such as biofouling
and non-specific binding, and the resulting need to use purified
buffers greatly reduces the clinical relevance of these sensors.
Here, we overcome this limitation by using distinct components
within the sensor to perform purification and detection. A
microfluidic purification chip simultaneously captures multiple
biomarkers from blood samples and releases them, after
washing, into purified buffer for sensing by a silicon nanoribbon
detector. This two-stage approach isolates the detector from
the complex environment of whole blood, and reduces its
minimum required sensitivity by effectively pre-concentrating
the biomarkers. We show specific and quantitative detection
of two model cancer antigens from a 10 ml sample of whole
blood in less than 20 min. This study marks the first use of
label-free nanosensors with physiological solutions, position-
ing this technology for rapid translation to clinical settings.

Biomarkers have emerged as potentially important diagnostic
tools for cancer and many other diseases. Continuing discoveries
of such biomarkers and their aggregation into molecular signatures
suggests that multiple biomarkers will be necessary to precisely
define disease states. Thus, parallel detection of biomarker arrays
is essential for translation from benchtop discovery to clinical vali-
dation. Such a technique would enable rapid, point-of-care (POC)
applications requiring immediate diagnosis from a physiological
sample. Critically, such a system must also be capable of detecting
very low levels of aberrant genes and proteins, as many biomarkers
are present at minute concentrations during early disease phases3–6.
Given these requirements, the use of conventional diagnostic
assays5,6,14 has been a limiting factor. An approach that is based
on rapid, label-free sensing technologies would be ideally suited
for clinical applications6–13.

Since their introduction in 2001 (ref. 7), label-free nanosensors
have demonstrated great potential to serve as POC detectors
capable of ultrasensitive, real-time, multiplexed detection of mul-
tiple biomolecular species6,8–13. Despite their appeal, electronic
nanosensors continue to be a challenge to implement, because fun-
damental limitations render them incapable of sensing molecules in
complex, physiological solutions6,8–13. Biofouling and non-specific
binding readily degrade the minute active surface areas of such
devices (,0.1 mm2; ref. 15) and label-free sensing requires purified,
precisely controlled buffers to enable measurements to be per-
formed. In the case of nanowire field-effect transistor (FET)
sensing, low salt (,� 1 mM) buffers are required to prevent
screening of the charge-based electronic signal12,16.

To overcome these limitations we have developed a new in-line
microfabricated device that operates upstream of the nanosensors
to purify biomarkers of interest. This microfluidic purification chip
(MPC) captures cancer biomarkers from physiological solutions
and, after washing, releases the antigens17 into a pure buffer suitable
for sensing. The chip design increases nanosensor specificity to that
of conventional sandwich assay techniques, because it requires two
antibodies to bind biomarkers for a positive signal to be produced18.

Figure 1 schematically illustrates the operation of the MPC. The
avidin-functionalized chip19 (Fig. 1a) is treated with antibodies to
any number of specific biomarkers conjugated to biotinylated,
photocleavable crosslinkers containing a specific 19-mer DNA
sequence (Fig. 2a)20. The MPC geometry was chosen to optimize
biomarker binding (Supplementary Fig. S1)14 and chips were fabri-
cated from 4-inch silicon wafers in a one-step photolithographic
process (Supplementary Fig. S2). Completed chips (Fig. 2b) were
loaded into a custom-machined flow chamber (Fig. 2b, inset, and
Supplementary Fig. S3), which enabled fluid handling and main-
tained a constant volume of 5 ml in the system.

An example operation is illustrated in Fig. 1b–d. First, a blood
sample flows through the chip (Fig. 1b) and the chip-bound anti-
bodies bind specific soluble biomarkers, essentially purifying these
molecules from whole blood. After this capture step, wash and
sensing buffers are perfused through the device. Flow is then
halted, and the sensing buffer-filled MPC is irradiated with ultra-
violet (UV) light (Fig. 1c), resulting in cleavage of the photolabile
group20223 and release of the bound biomarker–antibody–DNA
complexes. The UV photocleavage process was shown not to
affect the immunoactivity of the biomarkers (Supplementary
Fig. S4). The DNA component was critical for preliminary assay
validation experiments (Fig. 2c). As shown in Fig. 1d, after a
second valve switching step transfers MPC contents to the nanosen-
sor chip, the complexes bind the secondary antibodies on the nano-
wire surfaces. The purification/sensing operation thus requires two
specific antibody binding events for detection, a significant improve-
ment in selectivity over previous label-free nanosensing schemes6–13.

To demonstrate the effectiveness of the capture–release
approach, we used a readily available fluorescently labelled
antigen–antibody pair, fluorescently labelled chicken ovalbumin
(OVA–FITC) and its antibody anti-OVA IgG. OVA–FITC was
added to heparinized murine blood and flowed through an anti-
OVA functionalized chip. After washing and flushing with sensing
buffer, fluorescence imaging demonstrated specific OVA–FITC
binding to chip-bound antibodies (Fig. 2d). A control chip, to
which anti-prostate specific antigen (PSA) was bound, showed a
negligible fluorescent signal (Fig. 2d, inset). After UV irradiation
and subsequent flushing of the sensing reservoir with fresh buffer,
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the fluorescence signal from the anti-OVA chip was greatly dimin-
ished (Fig. 2d, inset).

To demonstrate the generality of the MPC technique, we used
two model cancer antigens, PSA and carbohydrate antigen 15.3
(CA15.3), standard clinical markers for prostate24,25 and breast
cancer26,27, respectively. Successful capture and release of PSA and
CA15.3 was verified with a modified enzyme-linked immunoassay
(ELISA) technique (Fig. 2c)18, in which the first detection step con-
sisted of the hybridization of a complementary, biotinylated 19-mer
to the crosslinker DNA sequence. Six increasing concentrations of
PSA and CA15.3 were added to heparinized rat blood and
samples were flowed through MPCs functionalized with both
anti-PSA and anti-CA15.3. The introduced concentrations
spanned clinically relevant ranges24–27. The data in Fig. 2e,f demon-
strate a monotonic relationship between the concentration of bio-
marker introduced in whole blood and that released into pure
sensing buffer. The absolute yields of these experiments are in agree-
ment with modelling studies (Supplementary Fig. S1c). Biomarker
capture by MPCs can be significantly increased by adjusting
either the operation conditions, such as the flow rate into the
device (modelled in Supplementary Fig. S1d), or the
device dimensions.

A critical feature of this integrated approach is that the MPC-
purified biomarker complex concentrations are well above those
required for label-free, electronic detection. Although previous
studies using nanowire sensors have demonstrated PSA detection
levels as low as 0.9 pg ml21 (refs 6,10), this exquisite sensitivity is
not a critical factor for MPC-nanosensor operation. We thus
chose to use ‘nanoribbons’, devices with nanoscale thicknesses

and microscale lateral dimensions28, which are less sensitive but
have significant fabrication and cost advantages. These devices, fab-
ricated using conventional lithographic techniques, have been
demonstrated to detect streptavidin in the 0.0318–53 ng ml21

range28, a sensitivity range ideally suited for MPC-purified cancer
antigen detection. We fabricated 25-nm-thick devices according to
a similar process (Supplementary Fig. S5)28, but incorporated
ohmic contacts to the devices. Device images are provided in
Fig. 3a. Electrical characterization verified that this approach pro-
duced high-quality devices, with on/off ratios of .106 (Fig. 3b)
and small hystereses between forward and reverse IDS(VG) sweeps
(Fig. 3c), where IDS is the drain–source current and VG is the gate
voltage. Surface functionalization did not compromise the device
electrical characteristics (Supplementary Fig. S7), and solution
gating (VG,SOLN) demonstrated that VG¼2 5 V was an optimal
operating point for sensing studies (Fig. 3d).

As shown in Fig. 2 and detailed in the Supplementary
Information, devices were functionalized either with anti-PSA or
anti-CA15.3. Antibodies were immobilized to the sensor using
N-hydroxysuccinimide (NHS)/1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC) chemistry. To verify that the signal from
binding proteins would not be screened by the buffer solution,
direct measurements of the amount of the signal that would be
unscreened were carried out by varying buffer salt concentration16.
This study indicated that �50% of the signal was not screened by
the buffer solution (see Supplementary Information).

We applied these devices to sensing the biomarkers from the
MPC-purified whole blood samples. The normalized responses of
these same devices to MPC-purified, antigen-spiked blood
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samples containing both 2.5 ng ml21 PSA and 30 U ml21 CA15.3
(as well as negative controls) are shown in Fig. 4a,b, respectively.
After the injection transient noise subsided11, device current levels
were increased by antigen binding due to the negative charge con-
ferred to the antigens by the basic sensing buffer. Similar signals
were obtained with a PSA/CA15.3 spiked sensing buffer positive
control, and no device response was observed with an unspiked,
MPC-purified blood negative control. To reduce potential transient
electrical signals upon injection, buffer salt concentrations of the
functionalized devices and the MPC-purified samples were kept
approximately the same. The positive signal was observed to
increase linearly with time, following well-known ligand–receptor
kinetics29, in which initial rates at low relative analyte concentrations
are directly proportional to species concentration30. In fact, the
asymptotic saturation value of the device response is weakly
dependent on concentration for reversible reactions with a low dis-
sociation constant29, which is the case for the antigen–antibody

interactions. Thus, we focus on the initial kinetic reaction rates
instead of endpoint detection30.

Using these rates, a quantification of analyte concentrations
(against a known) can be made, as shown in Fig. 4c,d. Whole
blood samples spiked with 2 ng ml21 PSA and 15 U ml21 CA15.3
were MPC purified and sensed with anti-PSA and anti-CA15.3
functionalized devices. Using the slope of the normalized device
temporal response, we find that the slope ratios of both the PSA
and CA15.3 responses agree quite well with the initial spiked
whole biomarker concentrations. For PSA, the slope ratio is 1.38,
compared with a concentration ratio of 1.25; for CA15.3, the slope
ratio is 1.94, compared with a concentration ratio of 2.0. It should
be noted that this quantification occurs in the presence of another
species, therefore also demonstrating selectivity (see Supplementary
Information for further repeatability data).

The integration of a microfluidic purification step with label-free
nanosensor detection represents a paradigm shift in label-free

S

H
N

O

O

N
H

NO2

DNA 19-mer
NHHN

O

NH2

1.8

PSA detection

a

c d

e f

b

CA15.3 detection
Streptavidin-HRP
complex

DNA bound to 1’
antibody

Complementary
DNA bound to biotin

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 10 20 30 40 50

Concentration PSA introduced (ng ml−1) Concentration CA15.3 introduced (units ml−1)

Co
nc

en
tr

at
io

n 
PS

A
 c

ap
tu

re
d 

an
d 

re
le

as
ed

 (n
g 

m
l−

1 )

Co
nc

en
tr

at
io

n 
CA

15
.3

 c
ap

tu
re

d 
an

d 
re

le
as

ed
 (u

ni
ts

 m
l−

1 )

11

10

20

30

40

50

In
te

ns
ity

 (a
.u

.)

Position along red line

Figure 2 | MPC operation. a, Molecular structure of the photocleavable crosslinker. Primary antibody conjugation was performed with the amino

group (right) and binding to chip-bound avidin occurred through the biotin group (left). b, Scanning electron micrograph of a representative (w¼ 4 mm)�
(l¼ 7 mm)� (h¼ 100 mm) MPC capture–release chip. The inset is an optical image of MPC operation during washing. c, Schematic representation of PSA

and CA15.3 detection using a modified ELISA technique. d, Fluorescence optical micrograph of an anti-OVA functionalized MPC following OVA–FITC-spiked

whole blood flow and washing. The inset plots the pixel intensity (grey value, determined by ImageJ) versus position for the red cut line (green data plot)

and similar cut lines from images of post-UV irradiation and transfer (blue) and of an anti-PSA functionalized MPC following OVA–FITC-spiked blood flow

and washing. The same exposure times were used for all images. e,f, Scatter plots showing the concentration of PSA (e) and CA15.3 (f) released from the

MPC versus the concentration of PSA and CA15.3 introduced in whole blood, respectively. Each data point represents the average of three separate MPC

runs, and error bars represent one standard deviation.
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electronic sensing of biomolecules. The technique described here
enables biomarker detection from whole blood or any other physio-
logical fluid without the challenges associated with tailoring sensor
operation for the medium of interest or engineering nanosensors
that can withstand complex fluid media. Furthermore, the need
for ultrasensitivity in electronic detection may not be essential
with such an integrated platform because of its ability to pre-con-
centrate molecules of choice before sensing. The attractiveness of
the method lies in its simplicity, speed and ability to simultaneously
capture multiple biomarkers, enabling multiplexed, highly sensitive
downstream detection with label-free sensors. This proof-of-prin-
ciple demonstration of the non-integrated individual components
should be easily integratable into a compact, self-contained
system. Furthermore, the low cost of MPC purification renders
this system capable of stand-alone use or use in tandem with
more expensive sensing methodologies, such as rare circulating
tumour cell detectors14, for more complex diagnoses. The portabil-
ity and versatility of this method represents the crucial next step for
label-free sensors and should position these and similar nascent
sensing technologies for rapid molecular signature determinations.
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